Biostatistics I: Hypothesis testing

Categorical data: Chi-square and Fisher's exact tests

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

e.andrinopoulou@erasmusmc.nl

♥@erandrinopoulou

In this Section

- Chi-square test
- Fisher's exact test
- Examples

Assumptions

- The study groups must be independent
- There are 2 variables, and both are measured as categories, usually at the nominal level
- > The levels (or categories) of the variables are mutually exclusive

The chi-square test tests the statistical significance of the observed relationship with respect to the expected relationship

- Two variables are related or independent
- Goodness-of-fit between observed distribution and theoretical distribution of frequencies

Scenario

Is there a relationship between gender and whether or not someone followed an online course?

Hypothesis

 H_0 : there is not association between gender and whether someone followed an online course H_1 : there is an association between gender and whether someone followed an online course

If a chi-square goodness of fit test is performed then: The null and alternative hypotheses for our goodness of fit test reflect the assumption that we are making about the population

Connection with linear regression

Let's assume a 2x2 table with variable A (*i*-th categories) and variable B (*j*-th categories). A multiplicative model that reproduces the cell frequencies exactly is:

 $n_{ij} = N * \alpha_i * \beta_j * \alpha \beta_{ij}$ where

- α_i : the main effect of variable A at category *i*
- β_j : the main effect of variable B at category j
- $\alpha \beta_{ij}$: interaction between the two variables
- ► *N* : total number of subjects

If we take the logarithm of both sides, we can rewrite it as:

 $log(n_{ij}) = log(N) + log(\alpha_i) + log(\beta_j) + log(\alpha\beta_{ij}),$ which is a log-linear model

Test statistic

- We must know the observed and expected values
- The test statistic is: $X^2 = \sum_{i=1}^{K} \frac{(O_i E_i)^2}{E_i}$, where *K* are the contingency table cells, *O* is the observed value and *E* the expected value.

When the values in the contingency table are fairly small a "correction for continuity" known as the "Yates' correction" may be applied to the test statistic: $X^2 = \sum_{i=1}^{K} \frac{(|O_i - E_i| - 1/2)^2}{E_i}$

Sampling distribution

- χ^2 -distribution with df = (number of rows - 1) * (number of columns - 1)
- Critical value and p-value

If a chi-square goodness of fit test is performed then: df = number of categories - 1

Type I error

• Normally α = 0.05

Draw conclusions

• Compare test statistic (X²) with the critical value or the p-value with α

Scenario

Is there a relationship between gender and whether or not someone followed an online course?

Hypothesis

 H_0 : there is not association between gender and whether someone followed an online course H_1 : there is an association between gender and whether someone followed an online course

Chi-square test: Application

Collect and visualize data

Observed:

	Yes: online course	No: online course	Sum
Male	33	14	47
Female	29	24	53
Sum	62	38	100

Expected:

For each cell we calculate =

(total number of obs for the row) * (total number of obs for the column) / (total number of obs)

	Yes: online course	No: online course
Male	29.1	17.9
Female	32.9	20.1

Test statistic

$$X^{2} = \sum_{i=1}^{K} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \frac{(33 - 29.1)^{2}}{29.1} + \frac{(14 - 17.9)^{2}}{17.9} + \frac{(29 - 32.9)^{2}}{32.9} + \frac{(24 - 20.1)^{2}}{20.1} = 2.59$$
Degrees of freedom

df = (number of rows - 1) * (number of columns - 1) = (2 - 1) * (2 - 1) = 1

Type I error

 α = 0.05

Critical values

```
Using R we get the critical value from the \chi^2-distribution: critical value<sub>\alpha</sub> = critical value<sub>0.05</sub>
```

```
qchisq(p = 0.05, df = 1, lower.tail = FALSE)
```

[1] 3.841459

Draw conclusions

We reject the H_0 if:

 \blacktriangleright X² > critical value_{α}

```
We have 2.59 < 3.84 \Rightarrow we do not reject the H_0
```

Using **R** we obtain the p-value from the χ^2 -distribution:

pchisq(q = 2.59, df = 1, lower.tail = FALSE)

[1] 0.1075403

Fisher's Exact Test: Theory

- Fisher's exact test is an exact test but has type I error rates less than the specified value (because it is based on a discrete test statistic)
- Fisher's exact test is a special case of permutation tests
 - Calculate the original test statistic
 - Shuffle (permute) the data and calculate the test statistic
 - Repeat the above step for every possible permutation of the sample
 - Calculate the fraction of the values of the test statistic that are as extreme or more to the original test statistic

Assumptions

- The study groups must be independent
- The variables should be dichotomous
- Both row and column marginal totals are fixed in advance

Scenario

Is there a relationship between gender and whether or not someone followed an online course?

	Yes: online course	No: online course	Total
Male	011	012	TotalR1
Female	021	022	TotalR2
Total	TotalC1	TotalC2	Total

- The test assumes that both the row and column totals (TotalR1, TotalR2, TotalC1 and TotalC2) are known
- It calculates the probability that we would have obtained the observed frequencies that we did (O11, O12, O21 and O22) given those totals

If we assume the marginal totals as given, the value of Oll determines the other cells. Assuming fixed marginals, the distribution of the four cell counts follows the hypergeometric distribution, e.g for Oll:

$$Pr(Oll) = \frac{\binom{Tota|R1}{Oll}\binom{Tota|R2}{Oll}}{\binom{Tota|R2}{(Tota|C1)}} = \frac{\frac{Tota|R1!}{Oll|Ol2!}\frac{Tota|R2!}{Oll|Ol2!}}{\frac{N!}{Tota|C2!}} = \frac{Tota|R1!Tota|R2!Tota|C1!Tota|C2!}{Tota|!Oll!Ol2!O21!O22!}$$

$$= \frac{Tota|R1}{Oll!} = \frac{Tota|R1!}{Oll!(Tota|R1-Oll)!}$$

$$= \frac{Tota|R1!}{Oll!(Tota|R1-Oll)!}$$

$$= N(N-1)(N-2)(N-3)...1$$

Steps

- For all possible tables (given that TotalR1, TotalR2, TotalC1 and TotalC2 are fixed), calculate the relevant hypergeometric probability
- The p-value is the sum of hypergeometric probabilities for outcomes at least as favorable to the alternative hypothesis as the observed outcome

Type I error

• Normally α = 0.05

Scenario

Is there a relationship between gender and whether or not someone followed an online course?

Collect and visualize data

	Yes: online course	No: online course	Sum
Male	1	3	4
Female	3	1	4
Sum	4	4	8

For this table:

 $p = \frac{Tota/R1!Tota/R2!Tota/C1!Tota/C2!}{Tota/!011!012!021!022!} = \frac{4!4!4!4!}{8!1!3!1!3!} = 0.2285714$

Other alternatives:

	Yes:	No:	Sum
	online	online	
	course	course	
Male	0	4	4
Female	4	0	4
Sum	4	4	8

 $p = \frac{Tota/R1!Tota/R2!Tota/C1!Tota/C2!}{Tota/!011!012!021!022!} = \frac{4!4!4!4!}{8!0!4!0!4!} = 0.01428571$

	Yes:	No:	Sum
	online	online	
	course	course	
Male	2	2	4
Female	2	2	4
Sum	4	4	8

 $p = \frac{Tota/R1!Tota/R2!Tota/C1!Tota/C2!}{Tota/!011!012!021!022!} = \frac{4!4!4!4!}{8!2!2!2!2!} = 0.5142857$

	Yes:	No:	Sum
	online	online	
	course	course	
Male	3	1	4
Female	1	3	4
Sum	4	4	8

 $p = \frac{Tota |R1| Tota |R2| Tota |C1| Tota |C2|}{Tota |01| 012| 022| 022|} = \frac{4|4|4|4|}{8|3|1|3|1|} = 0.2285714$

	Yes:	No:	Sum
	online	online	
	course	course	
Male	4	0	4
Female	0	4	4
Sum	4	4	8

 $p = \frac{Tota/R1!Tota/R2!Tota/C1!Tota/C2!}{Tota/!011!012!021!022!} = \frac{4!4!4!4!}{8!4!0!4!0!} = 0.01428571$

For **one-tailed**: find extreme cases from the same direction as our data: 0.2285714 + 0.01428571 = 0.243

	Yes:	No:	Sum	
	online	online		
	course	course		
Male	1	3	4	
Female	3	1	4	
Sum	4	4	8	

Original data

 $p = \frac{Tota/R1!Tota/R2!Tota/C1!Tota/C2!}{Tota/!011!012!021!022!} = \frac{4!4!4!4!}{8!1!3!1!3!} = 0.2285714$

	Yes:	No:	Sum
	online	online	
	course	course	
Male	0	4	4
Female	4	0	4
Sum	4	4	8
Shuffle			

 $p = \frac{Tota|R1!Tota|R2!Tota|C1!Tota|C2!}{Tota|!011!012!021!022!} = \frac{4!4!4!4!}{8!0!4!0!4!} = 0.01428571$

Fisher's Exact Test: Application

For **one-tailed**: find extreme cases from the other direction as our data: 0.2285714 + 0.5142857 + 0.2285714 + 0.01428571 = 0.986

	Yes:	No:	Sum	
	online	online		
	course	course		
Male	1	3	4	
Female	3	1	4	
Sum	4	4	8	
Original data				

Original data

 $p = \frac{Tota/R1!Tota/R2!Tota/C1!Tota/C2!}{Tota/!011!012!021!022!} = \frac{4!4!4!4!}{8!1!3!1!3!} = 0.2285714$

	Yes:	No:	Sum
	online	online	
	course	course	
Male	2	2	4
Female	2	2	4
Sum	4	4	8
Shuffle			

 $\frac{TotalR1!TotalR2!TotalC1!TotalC2!}{Totall0111012102210221} = \frac{4!4!4!4!}{8!2!2!2!2!} = 0.5142857$

	Yes:	No:	Sum
	online	online	
	course	course	
Male	3	1	4
Female	1	3	4
Sum	4	4	8
Shuffle			

 $p = \frac{Tota/R1!Tota/R2!Tota/C1!Tota/C2!}{Tota/!011!012!021!022!} = \frac{4!4!4!4!}{8!3!1!3!1!} = 0.2285714$

	Yes:	No:	Sum
	online	online	
	course	course	
Male	4	0	4
Female	0	4	4
Sum	4	4	8
Shuffle			

 $\frac{\text{TotalR1!TotalR2!TotalC1!TotalC2!}}{\text{Total!O11!O12!O21!O22!}} = \frac{4!4!4!4!}{8!4!0!4!0!} = 0.01428571$

23

- For a two-tailed test we must also consider tables that are equally extreme in both direction
- This is challenging, therefore we sum the probabilities that are equal or less than that from the observed data:
 0.2285714 + 0.01428571 + 0.2285714 + 0.01428571 = 0.486

Draw conclusions

If $\alpha = 0.05 \Rightarrow$ we do not reject the H_0 since p-value is > 0.05

- Campbell I. Chi-squared and Fisher–Irwin tests of two-by-two tables with small sample recommendations. Statistics in medicine. 2007 Aug 30;26(19):3661-75.
- Crans GG, Shuster JJ. How conservative is Fisher's exact test? A quantitative evaluation of the two-sample comparative binomial trial. Statistics in medicine. 2008 Aug 15;27(18):3598-611.
- Lydersen S, Fagerland MW, Laake P. Recommended tests for association in 2× 2 tables. Statistics in medicine. 2009 Mar 30;28(7):1159-75.